Понятия со словосочетанием «равнобедренный треугольник»

Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Теорема о равнобедренном треугольнике — классическая теорема геометрии, утверждающая, что углы, противолежащие боковым сторонам равнобедренного треугольника, равны.

Связанные понятия

Уплощённая треуго́льная клинорото́нда — один из многогранников Джонсона (J92, по Залгаллеру — М20).
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J54, по Залгаллеру — П6+М2).
Наращённый усечённый тетра́эдр — один из многогранников Джонсона (J65, по Залгаллеру — М10+М4).
Скру́ченно удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J10, по Залгаллеру — М2+А4).
Скру́ченно удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J17, по Залгаллеру — М2+А4+М2), дельтаэдр.
В геометрии шестиугольная антипризма — это 4-я в бесконечном множестве антипризм, образованная чётным числом треугольных сторон между двумя шестиугольными сторонами.
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Два́жды ко́со наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J56, по Залгаллеру — П6+2М2).
В евклидовой геометрии ортодиагональный четырёхугольник — это четырёхугольник, в котором диагонали пересекаются под прямым углом.
Два́жды противополо́жно наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J55, по Залгаллеру — М2+П6+М2).
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой (то есть 90 градусов).
Три́жды наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J57, по Залгаллеру — П6+3М2).
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
Антипараллелограмм, или контрпараллелограмм, — плоский четырёхугольник, в котором каждые две противоположные стороны равны между собою, но не параллельны, в отличие от параллелограмма. Длинные противоположные стороны пересекаются между собою в точке, находящейся между их концами; пересекаются между собою и продолжения коротких сторон.
Удлинённая треуго́льная пирами́да — один из многогранников Джонсона (J7, по Залгаллеру — М1+П3).
Наращённая треуго́льная при́зма — один из многогранников Джонсона (J49, по Залгаллеру — П3+М2).
Удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J8, по Залгаллеру — М2+П4).
Удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J15, по Залгаллеру — М2+П4+М2).
Антипризма — полуправильный многогранник, у которого две параллельные грани (основания) — равные между собой правильные n-угольники, а остальные 2n граней (боковые грани) — правильные треугольники.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Удлинённая треуго́льная бипирами́да — один из многогранников Джонсона (J14, по Залгаллеру — М1+П3+М1).
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
Наращённый усечённый додека́эдр — один из многогранников Джонсона (J68, по Залгаллеру — М6+М12).
Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, в котором есть две пары смежных равных сторон.
Ромбоикосододекаэдр — полуправильный многогранник, состоящий из 12 правильных пятиугольников, 30 квадратов и 20 треугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся треугольник, пятиугольник и 2 квадрата.
Наращённый усечённый куб — один из многогранников Джонсона (J66, по Залгаллеру — М11+М5).
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
В геометрии японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Удлинённая пятиуго́льная бипирами́да — один из многогранников Джонсона (J16, по Залгаллеру — М3+П5+М3).
Два́жды ко́со наращённый усечённый додека́эдр — один из многогранников Джонсона (J70, по Залгаллеру — М12+2М6).
Противополо́жно скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J77, по Залгаллеру — М14+М6).
Два́жды противополо́жно наращённый усечённый додека́эдр — один из многогранников Джонсона (J69, по Залгаллеру — М6+М12+М6).
Скру́ченно удлинённая пятиуго́льная пирами́да, или отсечённый икоса́эдр — один из многогранников Джонсона (J11, по Залгаллеру — М3+А5).
Удлинённая пятиуго́льная пирами́да — один из многогранников Джонсона (J9, по Залгаллеру — М3+П5).
Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся 2 шестиугольника и пятиугольник. Каждый из пятиугольников со всех сторон окружён шестиугольниками. Усечённый икосаэдр — один из самых распространённых полуправильных многогранников, так как именно эту форму имеет классический футбольный мяч (если представить его пятиугольники и шестиугольники, обычно окрашенные соответственно...
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
Ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J78, по Залгаллеру — М13+М6+М6).
Два́жды наращённая треуго́льная при́зма — один из многогранников Джонсона (J50, по Залгаллеру — П3+2М2).
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Наращённая пятиуго́льная при́зма — один из многогранников Джонсона (J52, по Залгаллеру — П5+М2).
Два́жды ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J79, по Залгаллеру — М13+2М6).
Наращённый додека́эдр — один из многогранников Джонсона (J58, по Залгаллеру — М15+М3).
Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их...
Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Скру́ченный два́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J82, по Залгаллеру — М14+М6).
Три́жды наращённый усечённый додека́эдр — один из многогранников Джонсона (J71, по Залгаллеру — М12+3М6).
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я